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Dynamics of multimode diode lasers with strong, frequency-selective optical feedback
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The dynamical behavior of a class of multimode semiconductor diode lasers with emission wavelength
around 980 nm is investigated both experimentally and numerically in the presence of strong, frequency-
selective optical feedback provided by a fiber Bragg grating. The focus is set on the switching between broad-
and narrow-band optical spectra, on chaotic transitions, and on the loss of frequency locking between laser and
grating. Laser and feedback parameters are chosen in the typical ranges pertaining to wavelength stabilization
in erbium-doped fiber amplifiers for telecommunication applications. An improved set of rate equations, which
allows for arbitrary feedback levels and includes experimentally measured gain and linewidth enhancement
factor, is studied analytically and numerically.
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I. INTRODUCTION

Fiber-optical data transmission, based on wavelength
vision multiplexing and erbium-doped fiber amplifiers~ED-
FAs!, relies on the accurate definition of the emission wa
lengths of the lasers it employes. These essenti
accomplish two tasks: emitting the signal~in the 1520–1570
nm and 1570–1620 nm regions! and amplifying it by pump-
ing the erbium atoms in the EDFAs~in absorption bands
center around 980 nm and 1480 nm!.

Two different kinds of frequency selection and stabiliz
tion, corresponding to the two above-mentioned tasks, s
out. The former aims at realizing narrow-band laser sourc
the latter, multimode emission with a bandwidth (&3 nm)
that matches the absorption spectrum of the erbium
closely as possible within a broad operating-temperature
terval.

In both cases, stability and high out-of-band power s
pression are of primary importance. They need to
achieved and maintained against fluctuations in the de
characteristics arising from the fabrication processes
drifts in the gain curve induced by temperature or curr
variations.

Effective wavelength selection can be obtained with d
tributed feedback and distributed Bragg reflector lase
which are the appropriate sources for signal transmiss
Fiber Bragg gratings~FBGs!, on the other hand, have esta
lished themselves as the preferred tools for pump la
~which are employed in the amplification of the signal!,
because of their superior wavelength stabilization propert
versatility, good manufacturability, and low cost.

Depending on the design characteristics of the dev
~laser and FBG! and on their mutual distance, a variety
phenomena can be observed. In addition to providing
desired spectral bandwidth reduction and locking of
emission spectrum to the FBG’s central frequency@1–3#, the
feedback may break the temporal stability of the electrom
netic field @4–6#. In fact, the signal reflected from the FB
interferes with the internal field of the laser after the rou
trip time in the fiber~the ‘‘external cavity’’!, thus providing a
further time scale to the dynamics@7#. This generates powe
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fluctuations~in time and upon change of control paramete
@14,15#!, broadening of the optical spectrum~up to several
gigahertz: hence, the name of ‘‘coherence collapse’’ assig
to this regime@16,17#!, or even loss of the frequency locking

In the present paper, we discuss experimental results il
trating the switching between broad- and narrow-band o
cal spectra in 980-nm pump lasers of different generatio
when they are coupled to a fiber Bragg grating with typic
configuration parameters for optical communication appli
tions @18#. In particular, we focus on the case in which th
ratio between the grating’s and the laser’s front-facet refl
tivity is too large for a realistic application of the low
feedback approximations usually considered in the literatu
The lasers are of the single-quantum-well, ridge-wavegu
type.

Our theoretical description is based on an improved se
rate equations, which allows for arbitrary, frequenc
selective feedback levels; moreover, we include experim
tally measured gain and linewidth enhancement factors,
counting for temperature- and current-induced drifts.

The large-feedback, long-cavity regime in which we o
erate lies well beyond the region in which the system fi
becomes chaotic~usually via the quasiperiodic route!. There-
fore, the bifurcation analysis of the laser’s output upon
crease of the feedback amplitude and in dependence o
delay time is of little utility for the understanding of th
dynamics. The system finds itself deeply in a chaotic reg
of parameter space and admits multistable behavior wh
includes coexistence of chaotic attractors. This phenome
ogy has no counterpart in single-mode models.

We show that the switching between broad- and narro
band optical spectra corresponds to transitions between
existing chaotic and stable periodic attractors in phase sp
and is inherently different from the coherence-collapse lo
frequency fluctuations~LFF! that occur in single-mode mod
els as well. In the multimode case, in fact, such fluctuatio
are usually consistent with broadband optical spectra@19#:
different modes oscillate with different relative phases a
the spectra, averaged over a delay time, appear quite s
despite the intermittency of some individual modes’ amp
tudes. No single-mode chaotic motion has been obser
©2003 The American Physical Society05-1
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except for extremely narrow-bandwidth FBG reflectivity a
low current.

Finally, the loss of frequency locking is associated w
considerable changes of the carrier density, the spee
which is essentially given by the relaxation frequency of
laser. Since this is much larger than the average frequenc
the LFFs, the mode’s amplitudes change very little with
this time frame and the instability presents itself, in pha
space, as an oscillatory motion ‘‘transversal’’ to the directi
of the LFFs.

II. MODEL EQUATIONS

The derivation of the model can be followed with refe
ence to Fig. 1, which illustrates the experimental setup w
the diode laser, confined between the two reflectorsR1 and
R2, and the fiber Bragg gratingR3 @20#, inscribed in the
glass fiber at a distanceLext from the laser’s front facetR2.
The relevant variables are the carrier densityN(t) and the
slowly varying modal amplitudesAPn(t) and phasesfn(t)
of the complex field

EI~ t !5(
n

APn~ t !ei [nnt1fn(t)] ~2.1!

incident into the front facetR2 from inside the laser. The
squared amplitudePn is proportional to the optical intensit
of thenth longitudinal mode. The instantaneous frequency
the nth mode is given by

vn5nn1ḟn . ~2.2!

At resonance, the reference valuenn can be assumed to co
incide with one of the Fabry-Perot frequencies

Vn5V0~ I !1n~DV! ~nPZ!, ~2.3!

where V0(I ) is the frequency of the central mode at t
currentI andDV is the mode spacing.

The reflected complex fieldER(t) inside the laser at the
mirror R2 is the superposition of the first simple reflection
R2 and of multiple reflections betweenR2 and the grating
R3. Labeling with,51,2, . . . thesuccessive round trips in
the external cavity, the generic componentER of ER at the
frequencyv, can be written as

FIG. 1. Schematic representation of the laser diode, confi
within the two reflectorsR1 andR2, and of the external fiber Bragg
gratingR3 with indication of incident and reflected field at the fro
facet.
03660
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ER~ t !5r 2FEI~ t !1F~v! (
,51

`

@2r 2r 3~v!#,21EI~ t2,T!G ,

~2.4!

where EI is the corresponding component of the incide
field, r 2 is the reflection coefficient at the front facetR2 ,
r 3(v) is the complex reflection coefficient of the FBG, andT
is the round trip time in the external cavity. For simplicit
we chooser 25AR2.0 real and frequency independent. Th
feedback amplitude termF(v) is defined as

F~v!5hF

12r 2
2

r 2
r 3~v!, ~2.5!

wherehF is the power coupling efficiency between laser a
fiber. The form of r 3(v) is characterized by the centra
wavelength lBragg and the width Dl ~between the two
minima adjacent tolBragg) @21#: in our case, it describes
uniform, nonapodized FBG. Sincer 2ur 3(v)u!1, higher-
order reflections will be neglected in the following. Gene
ally, they can be taken into account in a simple way on
when the variation of the field across a delay timeT is neg-
ligible, so that EI(t2,T)/EI@ t2(,11)T#'EI@ t2(,
11)T#/EI@ t2(,12)T# and the series in Eq.~2.4! admits an
analytic sum~a similar, albeit additive, approximation wa
proposed in Refs.@22#!. The ratio

r eff~v!5
ER~ t !

EI~ t !
~2.6!

can now be taken as the definition of an effective reflect
coefficient for the compound (R2 ,R3). Specializing to the
mode-n component, and dividing byr 2, we have

r eff~vn!

r 2
511F~vn!APn~ t2T!

Pn~ t !
e2 i [nnT1fn(t)2fn(t2T)] .

~2.7!

In order to include the effect of the grating into the ra
equations,r eff is substituted forr 2 into the mirror loss coef-
ficient

aM52
1

L
ln~r 1r 2! ~2.8!

to yield the effective field decay rate

geff5vgrFa I2
1

L
ln~r 1r eff!G ~2.9!

of the compound cavity, whereL is the laser’s cavity length
vgr is the group velocity, anda I is the internal loss coeffi-
cient. Clearly,geff is the sum of the solitary laser’s decay ra

g5vgr@a I1aM#, ~2.10!

and of the cavity loss

d
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gn852
vgr

L
ln

r eff~vn!

r 2
. ~2.11!

These expressions, specified for each frequencyvn , are then
inserted into the field’s rate equations@23#

Ėn5F iVn1
1

2
~Gn2g!~11 ian!2

gn8

2 GEn , ~2.12!

whereGn5G(vn) is the stimulated emission atvn andan
5a(vn) is the ~frequency-dependent! linewidth enhance-
ment factor@24#. Recalling Eq.~2.1! and separating real~Re!
and imaginary~Im! part of the field yields

Ṗn5@Gn2g2Re~gn8!#Pn1SnGn , ~2.13!

ḟn5
an

2
@Gn2g#2

Im~gn8!

2
,

in which the spontaneous emissionSn has been introduced
phenomenologically.

The stimulated emission term is expressed as

Gn5
Hgn

11ePn
ln

N

Ntr
, ~2.14!

whereH5vgrGgmax, G is the modal confinement factor,gmax
is the maximum of the gain curveg(v), gn5g(vn)/gmax
,1 the rescaled gain,e is the gain compression factor@25#,
N is the carrier density, andNtr its transparency value. Th
rate equations~2.13! are completed by the derivative

Ṅ5
h I I

ueuV
2AN2BN22CN32

1

G (
n

GnPn ~2.15!

of the carrier density, whereh I is the internal efficiency,ueu
is the electron charge,V is the volume of the active region
andA, B, andC are the nonradiative, spontaneous, and Au
recombination coefficients, respectively.

In the simulation, analytical fits to experimental values
a(v) andg(v) have been used.

Linewidth enhancement and gain measurements.The
Fabry-Perot lasers investigated in this work are based on
InGaAs/AlGaAs material system. Their graded-index carr
confinement with a single quantum well is grown by molec
lar beam epitaxy. The narrow-stripe ridge waveguide p
vides lateral confinement to the fundamental optical mo
We consider several generations of devices, differing in e
taxial structure, waveguide design, and cavity length@26#.
The light is coupled into a single-mode fiber by means o
lens polished on the fiber tip. Coupling efficiencies betwe
0.75 and 0.84 are obtained.

In semiconductor lasers, the coupling between the car
induced variation of the refractive index and the gain is
pressed by the linewidth enhancement factora(v) @24#. Its
magnitude was estimated experimentally by measuring
gain and the Fabry-Perot mode shift as a function of
current density below and above threshold, and using
03660
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method described in Ref.@27#. The resulting curve, obtaine
at a heat-sink temperature of 25 °C, is shown in Fig. 2.

The modal net gain was estimated from the spontane
emission spectra of the diode laser~TE polarization! using
the method described in Ref.@28# by Cassidy. For compari-
son, we also applied the more commonly used method
Hakki and Paoli@29#. The former is more appropriate in ou
case because of its weaker dependence on the wavele
resolution of the measurement system. Figures 3~a! and 3~b!
show the gain curves of a Fabry-Perot pump laser as a fu
tion of the emission wavelength. In Fig. 3~a!, the heat-sink
temperature was held fixed at 25 °C and the current w
chosen as 0.42, 0.55, 0.83, and 1.05 times its threshold v
~from bottom to top!. In Fig. 3~b!, with the current at thresh
old, the following temperatures were chosen: 15, 25, 35,
55, 65, and 75 °C~from left to right in the figure!. As the
temperature increases, the gain curves are seen to sh
longer wavelength~temperature- and carrier-induced ba
gap reduction! and to broaden~due to enhanced carrie
spreading inside the bands!. The threshold current densit
increases accordingly.

The drifts of the gain curve towards larger waveleng
upon increase of both driving current and device tempera
have been incorporated into the model via suitable fit fu
tions.

III. RESCALING AND FIXED-POINT SOLUTIONS

In order to simplify the analysis, it is convenient to intro
duce the adimensional variables

xn5
H

ANtrG
Pn , y5

N

Ntr
, t5Htph, ~3.1!

wheretph is the physical time andt the new rescaled time. In
the following, all time derivatives will be taken with respe
to t. By further defining

FIG. 2. Experimental values of the linewidth enhancement f
tor a(l) vs the wavelengthl in nm, measured at 25 °C.
5-3
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k5
g

H
, sn5

H

ANtrG
Sn ,

J5
h I

eVANtr
I[

I

I 0
, «5

ANtrG

H
e,

a5
A

H
, b5

B

A
Ntr , c5

C

A
Ntr

2, ~3.2!

rn5
Re~gn8!

H
, sn5

Im~gn8!

H
,

FIG. 3. Experimentally measured gainG(ln) per centimeters as
a function of the wavelengthln ~in nanometers! for a 980-nm diode
laser. In ~a!, the temperature was held at 25 °C and the curr
varied from 0.42 to 1.05 times the threshold value~from bottom to
top!; in ~b!, seven different temperatures~increasing from left to
right! were selected at threshold. More details are provided in
text.
03660
the laser equations can be rewritten as

ẋn52~k1rn!xn1gn

sn1xn

11«xn
ln y,

ḟn5
an

2 S gnln y

11«xn
2kD2

sn

2
, ~3.3!

ẏ5aFJ2y2by22cy32(
n

gnxnln y

11«xn
G .

The rescaled real and imaginary parts of the cavity lossg8,
rn , andsn , contain the rescaled round trip time

t5HT ~3.4!

in the external cavity.
The following numerical values can be assumed for r

erence purposes, although they vary for the laser genera
we have investigated:

H52.831011 s21,

I 05931023 A,

k50.4,

max$usnu%5531025, ~3.5!

«58.531024,

a5731024,

b50.7,

c50.06.

Generation-II lasers are 33% longer than generation-I las
In addition, the front-facet reflectivityR2 of generation-II
lasers is 38% smaller. However, these differences have
a minor effect on the value ofk. The main change occurs i
the feedback amplitudeF(v), whereR2 appears in the de
nominator, which improves the locking capability o
generation-II lasers in the external cavity.

A. Fixed points

Generally, Eqs.~3.3! admit a fixed-point solution in the
variablesxn andy only, but not in the phasesfn . In fact, the
presence of the feedback induces a net constant contribu
un to ḟn , which brings the instantaneous frequencies~2.2!
closer to nearby modes of the external cavity: the remain
difference is accounted for by the slowly varying part

cn~ t !5fn~ t !2unt. ~3.6!

Accordingly, the arguments of the complex exponential
Eq. ~2.7! can be rewritten~in rescaled units! as

Fn1fn~ t !2fn~ t2t!5Fn1unt1cn~ t !2cn~ t2t!,
~3.7!

t

e
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whereFn5nnT mod 2p. The new variablescn do admit
fixed-point solutions.

Therefore, we indicate with ($xn
0%,$cn

0%,y0) the solutions

of ( ẋn ,ċn ,ẏ)50 in Eqs. ~3.3! and write the steady-stat
mode amplitudes as

xn
05

~r nln y021!1A~r nln y021!214«r nsn ln y0

2«
,

~3.8!

where

r n5gn /~k1rn! ~3.9!

is the ratio between gain and loss for moden ~the superscript
0 having been omitted fromr n , sn , andrn , for simplicity!.
Although the value ofy0 cannot be computed analytically
since this requires solving transcendental equations, the
proximate estimate

ln y05
11«xn

r n
1O~sn! ~3.10!

is readily obtained from the first of Eqs.~3.3!: the symbol
O(sn) represents a first-order correction insn . This expres-
sion immediately allows one to separate lasing from non
ing modes:

xn*O~«!/«, if r n ln y0.11O~«!, ~3.11!

xn&O~Asn /«!, if r n ln y0,12O~«!.

Therefore, sincey0.1 is hardly larger than 2 in most prac
tical applications, the gain/loss ratior n must be sufficiently
large for moden to be lasing.

We further use Eq.~3.10! to eliminatexn from the last of
Eqs. ~3.3! for ẏ50 and restrict the sum to the setN1

5$n:gn.0%: these, in fact, are the labels of the only mod
with a chance of overcoming the thresholdJth , which can be
defined as

Jth5y01by0
21cy0

3 . ~3.12!

By settingn15card(N1) and

D5J2Jth , ~3.13!

we finally obtain

ln y05S k1 r̄11
D«

n1
D /ḡ1 , ~3.14!

whereŌ15(N1
On /n1 denotes the average of the gene

mode observableOn in the positive-gain rangeN1 . This
expression yields the fixed-point solution for the carrier d
sity. Upon neglection of the third term on the right-hand s
~rhs! of Eq. ~3.14! and insertion into Eq.~3.12!, an explicit
expression for the threshold current can be obtained.
term r̄1 , however, still contains the phasescn

0 , which will
be discussed in the following.
03660
p-

s-

s

-
e

e

The lasing condition~3.11! can be rephrased as

r n ln y05
gn

ḡ1

k1 r̄1

k1rn
*1, ~3.15!

up to a term of the order ofD«/n1 . For the free-running
laser (rn50), this implies that the lasing modes are tho
having a gaingn that lies above the averageḡ1 . The general
case withrnÞ0 is illustrated in Fig. 4 forI 5120 mA, Lext
50.5 m, R350.0001, and a fiber Bragg grating bandwid
Dl52 nm. The horizontal line in the lower panel represe
the ratio between the average gain and the average los
N1 .

B. Phase behavior in the Lang-Kobayashi approximation

The phase dynamics is better discussed with referenc
a simplified model, proposed by Lang and Kobayashi in R
@4#, which can be recovered from Eqs.~3.3!, ~2.11!, and~2.7!
in the weak-feedback limit max$ur3u%/r2!1. By expanding the
logarithm in Eq.~2.11! for F(vn)!1 and setting

f n5
vgr

HL
F~vn!, ~3.16!

the first two equations in Eqs.~3.3! take the form

ẋn52kxn1gn

sn1xn

11«xn
ln y1 f nAxnxn8cos@Fn1fn2fn8#

~3.17!

ḟn5
an

2 S gnln y

11«xn
2kD2

f n

2
Axn8

xn
sin@Fn1fn2fn8#,

FIG. 4. Numerical optical spectrumS(ln) ~upper panel, deci-
bels! and gain/loss ratior n ~lower panel! vs the wavelengthln in
nanometers. The parameter values used in the simulation ar
ported in the text.
5-5
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where the prime inxn8 andfn8 indicates that these values a
taken at the delayed timet2t. With the addition of the
equation for the carrier density, which is unchanged fr
Eqs. ~3.3!, these are the Lang-Kobayashi equations, in a
mensional form.

At the fixed point,xn5xn8 , fn5fn81unt, and ḟn5un :
using Eq.~3.10!, rewritten as

gn ln y0

11«xn
2k5rn1O~sn!, ~3.18!

the second of Eqs.~3.17! becomes

un5
an

2
rn2

f n

2
sin@Fn1unt#, ~3.19!

where the small-feedback expansion

rn52 f n cos~Fn1unt! ~3.20!

can be applied. A simple trigonometric operation fina
yields

un52
f n

2
A11an

2sin@Fn1unt1arctan~an!#. ~3.21!

Therefore, a complete fixed-point solution for the~small-
feedback! rate equations can be found only if each mod
frequencyvn is displaced from its solitary-laser valuenn
@see Eq.~2.2!# by the amountun that solves Eq.~3.21!. It
may be noticed that this result is exact in«.

Multiple solutions exist if the derivative of the rhs of Eq
~3.21! is larger than 1 at the inflection points, i.e.,
f ntA11an

2/2.1. This is illustrated in Fig. 5, forf n50.1,
an52, andt5200 @the labelF(un) denotes the rhs of Eq
~3.21!#. The values of f n and t are usually larger (t
.2000): the number of fixed points increases and their se

FIG. 5. Illustration of the fixed-point relation~3.21! for the
phase shift in the Lang-Kobayashi model: the symbolF(un) de-
notes the function on the rhs of Eq.~3.21!.
03660
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ration decreases accordingly. Furthermore, Eqs.~3.19! and
~3.20! can be combined into the form

~2un2anrn!21rn
25 f n

2 , ~3.22!

which defines an ellipse in the plane (un ,rn). The three
curvesrn versusun defined by Eqs.~3.19!, ~3.20!, and~3.22!
are displayed in Fig. 6. Their intersections determine
fixed points of the system. For large feedback, the analyt
study is considerably more difficult. The locations of th
fixed points are still found on approximately elliptic curve
for moderate values ofR3, but strong deformations appea
for largeR3.

The potential number of solutions is very large: ifn0
modes are comprised within the FBG’s bandwidth, and e
of them exhibitsm intersections in Eq.~3.21!, we may expect
aboutmn0 different solutions. Therefore, a stability analys
of this system cannot be easily carried out analytically. N
ertheless, results obtained for the single-mode case@5,30,31#
are still qualitatively valid. In particular, solutions located
the lower part of the ellipse correspond to modes of the co
pound cavity and are stable for weak feedback; solutions
the upper branch are always unstable. The phase shiftsun are
of the order of 1/4–1/2 of the mode separationDV ~2.3!.

For increasing feedback level, several structural chan
occur, which include Hopf bifurcations of fixed points an
limit cycles, with the creation of tori, torus breakup, inte
mittency, and crises. Because of the low front-facet reflec
ity R2 in optical communications equipment, chaotic beha
ior is already achieved forR3*1024 and the large-feedbac
regime can be defined byR3*1022 ~the coupling efficiency
hF being of the order of 0.75–0.84!. Therefore, in these
applications, the Lang-Kobayashi model is incorrect ev
though simulations have been presented in the literatur
which it was used with parameter values outside of its va

FIG. 6. The three curvesrn ~real part of the compound-cavity
loss! vs un ~feedback-induced modal frequency shift! that corre-
spond to the Lang-Kobayashi fixed-point conditions in Eqs.~3.19!
~thin, solid!, ~3.20! ~dotted!, and~3.22! ~ellipse!.
5-6
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DYNAMICS OF MULTIMODE DIODE LASERS WITH . . . PHYSICAL REVIEW E68, 036605 ~2003!
ity range. In particular, the phenomenology in the larg
feedback regime can only be studied with model~3.3!. A few
solutions observed in these regions of the parameter s
will be illustrated in the following section.

IV. MAIN TRAJECTORIES AND TRANSITION TYPES

System~3.3! has been integrated by using 128 or 2
laser modes and phases, correcting the sum in the third e
tion in Eqs. ~3.3! to account for the amplitudes of the e
cluded side modes. The logarithmsqn5 ln xn of the mode
amplitudes have been integrated, rather than thexn them-
selves, to achieve a higher accuracy. Because of the w
spread multistability of this system, we illustrate a fe
samples of its typical behavior, rather than scanning a p
tion of parameter space in a systematic manner. In the
lowing, we present four main types of solutions or tran
tions: a quasiperiodic attractor, a transient from a narr
band to a multimode optical spectrum, coexisting stran
attractors, and the alternation between well-locked and pa
locked spectra. While the first is shown only for illustratio
purposes, the other three situations are typical of these
tems and relevant for the applications.

At very low feedback, fixed points are the most comm
solution. Their bifurcations, however, are quite abrupt a
hard to follow. Therefore, limit cycles and tori are seldo
observed. In Fig. 7, an attracting torus is shown in a tw
dimensional projection of phase space: the horizontal a
corresponds to the logarithm of the 980 nm mode amplit
x0, and the vertical one to the normalized carrier densityy.
The relevant parameters values areI 550 mA, R3
50.000 15, Lext50.25 m, andDl51 nm. The two main
frequencies correspond to the relaxation oscillations an
the round trip in the external cavity: their ratio is'3.636. It
should be pointed out that this solution coexists with at le

FIG. 7. Numerical attracting torus atI 550 mA, R3

50.000 15,Lext50.25 m, andDl51 nm. This attractor coexists
with at least two stable fixed points, with coordinates (lnx0,y) close
to (24.167,1.4782) and (0.842,1.47915) in this projection.
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two stable fixed points, the coordinates (lnx0,y) of which are
close to (24.167,1.4782) and (0.842,1.47915) in this tw
dimensional subspace. Of course, coexistence of~possibly
many! more attractors is not excluded. The optical spectr
corresponding to the torus of Fig. 7 is shown in Fig. 8:
average over a delay timet has been taken in order to obta
a stable picture which can be compared with the experim
tal ones. The spectra of the two fixed points are similar:
former has a dip atl05980 nm and the latter has one at th
nearby lower-wavelength mode. Tori first appear after
solitary laser’s fixed point has undergone two Hopf bifurc
tions~first, to a limit cycle and, then, to a torus! upon gradual
increase of the external reflectivityR3. The extremely low
value ofR3 shows how ‘‘compressed’’ the bifurcation regio
is with respect to the domain in which commercial devic
operate.

A chaotic transition with a broadening of the optical spe
trum is illustrated in Figs. 9–11 which all refer to the follow
ing parameter values:I 5120 mA, R350.015, Lext51 m,
and Dl52 nm. A transient orbit, corresponding to abo
600 roundtrips in the external cavity, eventually evolves in
the globally stable strange attractor in Fig. 10. The respec
optical spectra, also averaged over a timet, are qualitatively
different~single-mode vs multimode: see Fig. 11!. Notice the
smoothness of the multimode spectrum, in spite of the
regular shape of the attractor in Fig. 10, with its bursts in
both low-amplitudex0 and high carrier densityy regions. At
nearby parameter values, stable single- or two-mode s
tions are found, which correspond to fixed points in pha
space, although they are difficult to locate because of
smallness of their basins of attraction. Noise can destab
them and cause the alternation between narrow and m

FIG. 8. Numerically computed optical spectrumS(l) vs l ~in
nanometers!, averaged over a delay timet, for the solution of Fig.
7. The spectrum is in a 10 log10 scale, computed using the adime
sional variablesxn and including the proper transmission facto
through bothR2 andR3. All numerical spectra are prepared in th
way.
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BADII et al. PHYSICAL REVIEW E 68, 036605 ~2003!
mode spectra. Usually, two-mode solutions are more st
than single-mode ones. It must be stressed that this tra
tion, often dubbed ‘‘single-mode to multimode switching
occurs within a chaotic regime and is a different pheno
enon from the so-called coherence collapse@16,17#! which is
also related to a broadening of the spectrum. The latter
fact, is just the first appearance of chaos upon change
bifurcation parameter, often accompanied by low-freque

FIG. 9. Metastable chaotic orbit, computed atI 5120 mA, R3

50.015, Lext51 m, andDl52 nm. After a long transient~hun-
dreds of delay timest), it evolved into the stable strange attract
shown in Fig. 10.

FIG. 10. Stable strange attractor observed at the same param
values used in the computations of the orbit in Fig. 9. Notice
rare amplitude drops and the bursts in the carrier density.
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amplitude fluctuations, and is observed in single-mode m
els as well: after the onset of chaos, the derivativeḟ also
fluctuates chaotically and displaces the emission frequencv
@see Eq.~2.2!#, so that a line broadening appears in the o
tical spectrum.

The coexistence of strange attractors, a phenome
which is not observed in the low-feedback~Lang-Kobayashi!
approximation, is documented in Figs. 12–14. The param
values are I 5150 mA, Lext51 m, R350.1, and Dl
52 nm. The larger attractor is of the Shilnikov type@32#: a
fixed point, close to~3.3, 1.265! in this two-dimensional pro-
jection, has a two-dimensional stable manifold wi
complex-conjugate eigenvalues and a one-dimensional

ter
e

FIG. 11. Numerical optical spectra corresponding to the orb
of Figs. 9 ~simple line! and 10 ~line and circles!: the former is
narrow ~single mode!, while the latter is multimodal.

FIG. 12. Stable, Shilnikov-type strange attractor, computed
I 5150 mA, R350.1, Lext51 m, andDl52 nm.
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DYNAMICS OF MULTIMODE DIODE LASERS WITH . . . PHYSICAL REVIEW E68, 036605 ~2003!
stable manifold~nearly in the direction of constanty) with a
real eigenvalue. The smaller attractor has a similar temp
evolution, with a twisted shape, but the Shilnikov structure
less clearly unfolded. In spite of their qualitatively differe
aspect, the two solutions correspond to nearly identical o
cal spectra. Since the coexistence of~possibly several! attrac-
tors, either all chaotic or not, is widespread in this system
appears that the mere recording of optical spectra in the la
ratory can hardly help classify the dynamical behavior in
precise way.

Finally, we briefly illustrate the transition betwee
frequency-locked and either unlocked or partly locked c

FIG. 13. Smaller stable attractor, observed at the same pa
eter values used in the computation of the solution in Fig. 12.
tice the different scales on they axis.

FIG. 14. Numerical optical spectra corresponding to the or
of Figs. 12~simple line! and 13~line and circles!. The graphs al-
most coincide.
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dition in this laser setup. In Fig. 15, three optical spectra
shown. They have all been computed forI 560 mA, R3
50.015, Lext51 m, andDl51.2 nm, but using lasers o
different generations. The solid curve without symbols e
hibits a partly locked spectrum of a generation-I laser wh
later evolves into an unlocked spectrum, in which emiss
occurs around the gain maximum~outside of the figure, on
the left!, and then returns to a well-locked situation, which
marked with circles. These states alternate irregularly
time, whereby the fully locked behavior is widely predom
nant. The third graph, marked with triangles, shows a p
fectly locked state for a generation-II device which exhib
stable behavior in this parameter region. The different la
cavity length reflects in the different mode spacing~a 33%
difference!, which is clearly visible in the figure. This kind o
instability is characterized by ample oscillations in the c
rier densityy ~wider than those observed in Fig. 12!, while
possible intermissions of the phase-space trajectories into
low-amplitude regions are uninfluential. The attractors of
generation-II lasers for this parameter choice are smaller
more concentrated than those of generation-I devices,
are shifted towards lower carrier density. All these attract
are qualitatively similar to the one displayed in Fig. 10.

V. COMPARISON WITH THE EXPERIMENT

In this final section, we present experimental optical sp
tra and the corresponding time series in Figs. 16–21.
parameters values again correspond to typical frequen
stabilized pump lasers. The first two examples refer to
generation-I laser and the last four to a generation-II las
the main differences between these devices are in the fr

m-
-

s

FIG. 15. Numerical optical spectra of generation-I~simple solid
line and line with circles! and of generation-II~triangles! lasers, all
computed under the same conditions (I 560 mA, R350.015, Lext

51 m, and Dl51.2 nm). The first two alternate irregularly i
time, with the device being mostly in the well-locked conditio
~circles!.
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BADII et al. PHYSICAL REVIEW E 68, 036605 ~2003!
facet reflectivity and in the cavity length, as mention
above. Figure 16 clearly shows the main peak due to
reflection from the FBG and a side peak centered around
gain curve of the device. Notwithstanding the different p
rameter settings, this spectrum is comparable with the
displayed in Fig. 8. The dynamics, however, is clearly diff
ent. While Fig. 8 corresponds to a torus~Fig. 7!, in the
present example the motion is chaotic, as appears from
time series displayed in Fig. 17. Relatively frequent amp
tude drops are visible: this is the phenomenon often refe

FIG. 16. Experimental optical spectra of generation-I lasers
corded atI 560.4 mA, R350.015, Lext51 m, Dl54 nm, andT
518.2 °C.

FIG. 17. Time-series of the total intensityx(t), normalized to its
averagê x&, vs time t, corresponding to the spectrum in Fig. 1
time is in units of 1ms.
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to as ‘‘low-frequency fluctuations.’’ The strange attracto
which can be reconstructed via embedding, has a shap
the kind shown in Fig. 10. The limited time resolution of th
measurements~5 ns! only allows to view the overall shap
and apparent density of the attractors, but no clear detail
the orbits. For this reason, no experimental attractors
shown.

A different kind of amplitude drop is seen in the ne
example, Figs. 18 and 19, which demonstrates how a
fectly stable and locked optical spectrum can hide interes
dynamical behavior. The FBG central frequency is he
lBragg5973.5 nm.

- FIG. 18. Same as in Fig. 16, for a generation-II laser, recor
at I 560.3 mA, R350.03, Lext52 m, Dl51 nm, andT525 °C.

FIG. 19. Time series corresponding to the spectrum in Fig.
in analogy with Fig. 17.
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DYNAMICS OF MULTIMODE DIODE LASERS WITH . . . PHYSICAL REVIEW E68, 036605 ~2003!
Finally, a typical high-power optical spectrum is shown
Fig. 20. The corresponding time series is completely diff
ent from the previous ones: no low-frequency fluctuatio
occur, and the sequence has a ‘‘random’’ aspect. The attra
is apparently high dimensional. All of these features are w
reproduced by model~3.3!.

VI. CONCLUSIONS

We have studied the multimode dynamics of 980 n
pump lasers coupled with high-reflectivity, frequenc
selective fiber-Bragg gratings, both numerically and exp
mentally. An improved set of rate equations, which allo
one to treat high feedback levels, such as those usually
ployed in optical communication systems, has been p
sented. This type of frequency selection~stabilization! drives
the system deeply in a chaotic regime. Within it, we ha
singled out a few particularly relevant solutions and the tr
sitions that take place among them.

We pointed out that some of the latter and the alterna
of frequency-locked and unlocked states do not have a co
terpart in weak-feedback models, such as Lang-Kobayas
Moreover, the multimode system exhibits a richer pheno

FIG. 20. Same as in Fig. 18, identical laser, recorded aI
5450.1 mA,R350.02, Lext52 m, Dl51 nm, andT525 °C.
le

n
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enology than single-mode ones. Narrow~possibly single-
mode! optical spectra have been shown to appear when
trajectories visit certain regions of phase space, dependin
the parameters of the system. The switching between m
mode and narrow optical spectra, documented in Figs. 9–
has been shown to correspond to transitions between ch
and periodic attractors~either stable or destabilized b
noise!.

This is inherently different from the broadening of spe
tral lines associated with the low-frequency fluctuations t
are commonly reported, primarily in single-mode systems
connection with the term coherence collapse. The pres
study also casts light on this, often nebulously defined, c
cept. Indeed, broadening of the optical spectral lines
caused by the chaotic fluctuations of the phases which
cordingly affect the values of the emission frequenci
Therefore, this phenomenon is just a manifestation of
chaotic nature of the system’s trajectories.

Finally, the beneficial effect of chaos on multimode o
eration is reinforced in the sense that narrow-band spe
appear to correspond to small regions of phase-space w
tend to shrink for generation-II lasers, since these achi
higher output power and, in turn, higher levels of chaos, w
more compact attractors.

FIG. 21. Time series corresponding to the spectrum in Fig.
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