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Dynamics of multimode diode lasers with strong, frequency-selective optical feedback
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The dynamical behavior of a class of multimode semiconductor diode lasers with emission wavelength
around 980 nm is investigated both experimentally and numerically in the presence of strong, frequency-
selective optical feedback provided by a fiber Bragg grating. The focus is set on the switching between broad-
and narrow-band optical spectra, on chaotic transitions, and on the loss of frequency locking between laser and
grating. Laser and feedback parameters are chosen in the typical ranges pertaining to wavelength stabilization
in erbium-doped fiber amplifiers for telecommunication applications. An improved set of rate equations, which
allows for arbitrary feedback levels and includes experimentally measured gain and linewidth enhancement
factor, is studied analytically and numerically.
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[. INTRODUCTION fluctuations(in time and upon change of control parameters
[14,19), broadening of the optical spectrufap to several
Fiber-optical data transmission, based on wavelength digigahertz: hence, the name of “coherence collapse” assigned
vision multiplexing and erbium-doped fiber amplifi€iED-  to this regimg16,17), or even loss of the frequency locking.
FAs), relies on the accurate definition of the emission wave- In the present paper, we discuss experimental results illus-
lengths of the lasers it employes. These essentiallyrating the switching between broad- and narrow-band opti-
accomplish two tasks: emitting the sigriad the 1520-1570 cal spectra in 980-nm pump lasers of different generations,
nm and 1570-1620 nm regionend amplifying it by pump-  when they are coupled to a fiber Bragg grating with typical
ing the erbium atoms in the EDFA@n absorption bands configuration parameters for optical communication applica-
center around 980 nm and 1480 nm tions[18]. In particular, we focus on the case in which the
Two different kinds of frequency selection and stabiliza-ratio between the grating’s and the laser’s front-facet reflec-
tion, corresponding to the two above-mentioned tasks, stantivity is too large for a realistic application of the low-
out. The former aims at realizing narrow-band laser sourcegeedback approximations usually considered in the literature.
the latter, multimode emission with a bandwidtss§ nm)  The lasers are of the single-quantum-well, ridge-waveguide
that matches the absorption spectrum of the erbium agype.
closely as possible within a broad operating-temperature in- Our theoretical description is based on an improved set of
terval. rate equations, which allows for arbitrary, frequency-
In both cases, stability and high out-of-band power supselective feedback levels; moreover, we include experimen-
pression are of primary importance. They need to beaally measured gain and linewidth enhancement factors, ac-
achieved and maintained against fluctuations in the deviceounting for temperature- and current-induced drifts.
characteristics arising from the fabrication processes and The large-feedback, long-cavity regime in which we op-
drifts in the gain curve induced by temperature or currenierate lies well beyond the region in which the system first
variations. becomes chaoti@sually via the quasiperiodic roytélhere-
Effective wavelength selection can be obtained with disfore, the bifurcation analysis of the laser’s output upon in-
tributed feedback and distributed Bragg reflector laserscrease of the feedback amplitude and in dependence of the
which are the appropriate sources for signal transmissiordelay time is of little utility for the understanding of the
Fiber Bragg grating$FBGS9, on the other hand, have estab- dynamics. The system finds itself deeply in a chaotic region
lished themselves as the preferred tools for pump lasersf parameter space and admits multistable behavior which
(which are employed in the amplification of the signals includes coexistence of chaotic attractors. This phenomenol-
because of their superior wavelength stabilization propertiesagy has no counterpart in single-mode models.
versatility, good manufacturability, and low cost. We show that the switching between broad- and narrow-
Depending on the design characteristics of the deviceband optical spectra corresponds to transitions between co-
(laser and FBGand on their mutual distance, a variety of existing chaotic and stable periodic attractors in phase space
phenomena can be observed. In addition to providing thand is inherently different from the coherence-collapse low-
desired spectral bandwidth reduction and locking of thefrequency fluctuationFF) that occur in single-mode mod-
emission spectrum to the FBG’s central frequefity3], the  els as well. In the multimode case, in fact, such fluctuations
feedback may break the temporal stability of the electromagare usually consistent with broadband optical speft€:
netic field[4—6]. In fact, the signal reflected from the FBG different modes oscillate with different relative phases and
interferes with the internal field of the laser after the roundthe spectra, averaged over a delay time, appear quite stable
trip time in the fiber(the “external cavity”), thus providinga despite the intermittency of some individual modes’ ampli-
further time scale to the dynami€g]. This generates power tudes. No single-mode chaotic motion has been observed,

1063-651X/2003/68)/03660%12)/$20.00 68 036605-1 ©2003 The American Physical Society



BADII et al. PHYSICAL REVIEW E 68, 036605 (2003

R, R, ”°
B R, ER(D =T E()+F(w) X [=rara()] &= €T)),
D) ) - = .
E<y (2.9
i i< Lext ;| where & is the corresponding component of the incident

field, r, is the reflection coefficient at the front facBb,
FIG. 1. Schematic representation of the laser diode, confined () is the complex reflection coefficient of the FBG, ahd
within the two reflector}; andR,, and of the external fiber Bragg s the round trip time in the external cavity. For simplicity,
gratingR; with indication of incident and reflected field at the front |, choose ,=\/R,>0 real and frequency independent. The

facet. feedback amplitude terfi(w) is defined as

except for extremely narrow-bandwidth FBG reflectivity and 1— r%

low current. F(w)= 7 ; rs(w), (2.5
2

Finally, the loss of frequency locking is associated with
considerable changes of the carrier density, the speed of . . -
which is essentially given by the relaxation frequency of the"."hereﬂF is the power coupllng eff|C|en_cy between laser and
laser. Since this is much larger than the average frequency gper. The form ofrs(w) is c_haracterlzed by the central
the LFFs, the mode’s amplitudes change very little WithinW"_"V_elength)‘Bfagg and the W'd.thm\ (beth_aen the_ two
this time frame and the instability presents itself, in phasdniNima adjacent tgragg [21]: in our case, it describes a

space, as an oscillatory motion “transversal” to the directionUniform, nonapodized FBG. Since,|rs(w)|<1, higher-
of the LFFs. order reflections will be neglected in the following. Gener-

ally, they can be taken into account in a simple way only
when the variation of the field across a delay tifne neg-
Il. MODEL EQUATIONS ligible, so that &§(t—<€T)/E[t—(C+L)T]=E[t— (€
+1)T)/E[t—(£+2)T] and the series in Eqd2.4) admits an

The derivation of the model can be followed with refer- . S : o o
ence to Fig. 1, which illustrates the experimental setup withanaIIytIC sum(a similar, albeit additive, approximation was

the diode laser, confined between the two reflecRyrsand proposed in Refd22]). The ratio

R,, and the fiber Bragg gratin@s; [20], inscribed in the Eat)

glass fiber at a distande,,; from the laser’s front faceR,. Mo )= R (2.6)
The relevant variables are the carrier dengitft) and the &

slowly varying modal amplitude§'P,(t) and phasesg,(t)

of the complex field can now be taken as the definition of an effective reflection

coefficient for the compoundR;,R3). Specializing to the
moden component, and dividing by,, we have

Ieii( @) Py(t=T) _. _ _
— " =14+F(w — ‘e i{vnT+ dp(t) = Pp(t—T)] .
T () NP

incident into the front faceR, from inside the laser. The 2.7

squared amplitud®,, is proportional to the optical intensity

of thenth longitudinal mode. The instantaneous frequency ofin order to include the effect of the grating into the rate

the nth mode is given by equationsy . is substituted for, into the mirror loss coef-
ficient

Ei()=2, VP, (t)ell"nt" ¢l (2.0

w,=vpt+ clﬁn. (2.2 1
aM=—E|n(I’1I’2) (28)
At resonance, the reference valug can be assumed to co-

incide with one of the Fabry-Perot frequencies to yield the effective field decay rate

Q,=0u(H+n(AQ) (ne?), (2.3

1
a— Eln(rlreff) (2.9

Yett = Ugr

where Qq(1) is the frequency of the central mode at the

currentl andAQ is the mode spacing. of the compound cavity, whelleis the laser’s cavity length,
The reflected complex fiel&g(t) inside the laser at the v, is the group velocity, andy, is the internal loss coeffi-

mirror R, is the superposition of the first simple reflection at cient. Clearly,y. is the sum of the solitary laser’s decay rate

R, and of multiple reflections betwedR, and the grating

Rs. Labeling with€=1,2, ... thesuccessive round trips in y=vgla,+ayl, (2.10
the external cavity, the generic componéhtof Eg at the
frequencyw, can be written as and of the cavity loss
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These expressions, specified for each frequengcyare then
inserted into the field’s rate equatiof3]

!

. 1 Y
Eq=|iQn+ 5(Gn=7)(L+ian) — 5|Es, (212

whereG,=G(w,,) is the stimulated emission at, and «,
=a(w,) is the (frequency-dependentinewidth enhance-
ment factof24]. Recalling Eq(2.1) and separating reéRe)
and imaginary(Im) part of the field yields

l.:)n:[Gn_'y— Rd'yr,])]Pn"_SnGn: (2.13

. ap Im(?’r;)
(f)n:?[en_'y]_ 2

in which the spontaneous emissi®, has been introduced
phenomenologically.
The stimulated emission term is expressed as

Hg, N

Cn= 17 ep. "N, "

(2.14

whereH =v 1" gmax, I' is the modal confinement fact@y,ax
is the maximum of the gain curvg(®), 9,=9(®,)/Imax
<1 the rescaled gairg is the gain compression factf25],

N is the carrier density, anl,, its transparency value. The
rate equation$2.13 are completed by the derivative

. | 1
N=%—AN—BN2—CN3—f§n: G.P, (2.19

of the carrier density, wherg, is the internal efficiencyle|
is the electron chargé/ is the volume of the active region,
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FIG. 2. Experimental values of the linewidth enhancement fac-
tor «(\) vs the wavelength in nm, measured at 25 °C.

method described in Reff27]. The resulting curve, obtained
at a heat-sink temperature of 25°C, is shown in Fig. 2.

The modal net gain was estimated from the spontaneous
emission spectra of the diode lad@iE polarization using
the method described in RdR8] by Cassidy. For compari-
son, we also applied the more commonly used method by
Hakki and Paol{29]. The former is more appropriate in our
case because of its weaker dependence on the wavelength
resolution of the measurement system. Figures 8hd 3b)
show the gain curves of a Fabry-Perot pump laser as a func-
tion of the emission wavelength. In Fig(eB, the heat-sink
temperature was held fixed at 25°C and the current was
chosen as 0.42, 0.55, 0.83, and 1.05 times its threshold value
(from bottom to top. In Fig. 3b), with the current at thresh-
old, the following temperatures were chosen: 15, 25, 35, 45,

andA, B, andC are the nonradiative, spontaneous, and AugeP>: 65 and 75°Qfrom left to right in the figure As the

recombination coefficients, respectively.

temperature increases, the gain curves are seen to shift to

In the simulation, analytical fits to experimental values of/ONger wavelengthitemperature- and carrier-induced band

a(w) andg(w) have been used.
Linewidth enhancement and gain measuremeiiise

gap reduction and to broaden(due to enhanced carrier
spreading inside the bandsThe threshold current density

Fabry-Perot lasers investigated in this work are based on tH¢reases accordingly.

The drifts of the gain curve towards larger wavelengths

InGaAs/AlGaAs material system. Their graded-index carrier - - i
confinement with a single quantum well is grown by molecu-UPOn increase of both drl\_/lng current and _dewc_e temperature
lar beam epitaxy. The narrow-stripe ridge waveguide pro_have been incorporated into the model via suitable fit func-
vides lateral confinement to the fundamental optical mode'lons-
We consider several generations of devices, differing in epi-
taxial structure, waveguide design, and cavity lendf].
The light is coupled into a single-mode fiber by means of a |, order to simplify the analysis, it is convenient to intro-
lens polished on the flb_er tip. Coupling efficiencies betweery;ce the adimensional variables
0.75 and 0.84 are obtained.

In semiconductor lasers, the coupling between the carrier- H
induced variation of the refractive index and the gain is ex- Xn:mpnv y= N_n t=Htp,
pressed by the linewidth enhancement faetbw) [24]. Its
magnitude was estimated experimentally by measuring thesheret, is the physical time antthe new rescaled time. In
gain and the Fabry-Perot mode shift as a function of thehe following, all time derivatives will be taken with respect
current density below and above threshold, and using theo t. By further defining

Ill. RESCALING AND FIXED-POINT SOLUTIONS

(3.9
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- T T T T T 7 the laser equations can be rewritten as

(a)

ShtXp |
ny,
1+eXx, y

. an[ gplny o
¢”2(1+sxn_k)_2’ 33

Xn: —(k+pn)Xnt0n

20

Xpln
y=a 3-y—by?—cy’~ > o)

n l+ex,

The rescaled real and imaginary parts of the cavity lo'ss
pPn, ando,, contain the rescaled round trip time

7=HT (3.4

—60 T in the external cavity.
900 920 940 960 980 1000 The following numerical values can be assumed for ref-
A, (nm) erence purposes, although they vary for the laser generations
we have investigated:

T T T T .
(b) | H=2.8x10% st

lo=9x10"3 A,
k=0.4,
i max|s,|}=5% 105, (3.5

£=8.5%X10"%,

G\,) (ecm™)

. ‘ . a=7x10"4,
_20 ‘. -
I b=0.7,

c=0.06.

—-30 L 1 1 1 ! ion- 0 ion-
040 980 980 1000 Generation-ll lasers are 33% longer than generation-I lasers.

In addition, the front-facet reflectivityR, of generation-II
lasers is 38% smaller. However, these differences have only
FIG. 3. Experimentally measured gaB(\,) per centimeters as a minor effect on the value &€ The main changg occurs in

a function of the wavelength,, (in nanometersfor a 980-nm diode ~ the feedback amplitudg(w), whereR; appears in the de-
laser. In(a), the temperature was held at 25°C and the currenfiOminator, which improves the locking capability of
varied from 0.42 to 1.05 times the threshold valfrem bottom to ~ g€neration-Il lasers in the external cavity.
top); in (b), seven different temperaturémcreasing from left to

A,, (nm)

right) were selected at threshold. More details are provided in the A. Fixed points
text. Generally, Egqs(3.3) admit a fixed-point solution in the
H variablesx,, andy only, but not in the phases,, . In fact, the
K= Z, Sy= S, presence of the feedback induces a net constant contribution
H AN, I 0, to ¢,, which brings the instantaneous frequendi2®)
| ANT closer to nearby modes of the external cavity: the remaining
J= n |=— g=—1 ¢ difference is accounted for by the slowly varying part
eVAN, Iy’ H 7
(1) = Pn(t) — Ont. (3.9
A B
a= e b= KN”’ c= KNfr, (3.2 Accordingly, the arguments of the complex exponential in
Eq. (2.7) can be rewritter(in rescaled unitsas
_Relyg) - _Imlyn) D+ (1) = Bo(t—7)= Dy By 7+ din( )= (1= 7),
pn H ’ O'n H ' (37)
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where ®,=v»,T mod 27. The new variables),, do admit i
fixed-point solutions. = 10 1
Therefore, we indicate with{§°},{4°},y,) the solutions )
of (Xo,tn,y)=0 in Egs. (3.3 and write the steady-state ~ — ¢
mode amplitudes as =<
2 L
XO:(rnIn Yo— 1)+ \(rynyo—1)%+4er,s, In yo -10 |
n 2¢e ' [
(3.9 _o0 [
where
-30
r=0n/(k+pp) (3.9 28
is the ratio between gain and loss for madéhe superscript &
0 having been omitted from,, s,, andp,, for simplicity). o4 i : .
Although the value ofy, cannot be computed analytically, : Dl b NG
since this requires solving transcendental equations, the ap- TP LR
proximate estimate 976 978 980 982 984
A,, (nm)
+eXp . . .
Inyo= +0(s,) (3.10 FIG. 4. Numerical optical spectrurd(\,) (upper panel, deci-
n bels and gain/loss ratio,, (lower panel vs the wavelength, in

nanometers. The parameter values used in the simulation are re-

is readily obtained from the first of Eq§3.3): the symbol ported in the text.

O(s,) represents a first-order correctiongp. This expres-

sion immediately allows one to separate lasing from nonlas- The lasing conditior(3.11) can be rephrased as

ing modes:
x,=0(e)ls, if r,Iny,>1+0(s), (3.1 - nyeed k+;+21 (3.18
" g+ k+p“ ,
Xn=O(ysple), if ryIny,<l-—0(e).

up to a term of the order oAe/n, . For the free-running
laser (p,=0), this implies that the lasing modes are those

having a gairg,, that lies above the avera&:; . The general
i case withp,# 0 is illustrated in Fig. 4 fol =120 mA, Lgy
We further U'SE Eq3.10 to e.l|m|natexn from the last of ~0.5 m, R;=0.0001, and a fiber Bragg grating bandwidth
Egs. (3.3 for y=0 and restrict the sum to the sél,  A) =2 nm. The horizontal line in the lower panel represents

={n:g,>0}: these, in fact, are the labels of the only modesie ratio between the average gain and the average loss in
with a chance of overcoming the threshdlg, which can be N,

defined as

Therefore, sincg/y>1 is hardly larger than 2 in most prac-
tical applications, the gain/loss ratigq must be sufficiently
large for moden to be lasing.

Jin=Yo+ by(2)+cy(3). (3.12 B. Phase behavior in the Lang-Kobayashi approximation

] The phase dynamics is better discussed with reference to
By settingn, =card(N) and a simplified model, proposed by Lang and Kobayashi in Ref.
[4], which can be recovered from Ed8.3), (2.11), and(2.7)

A3, (313 in the weak-feedback limit md,|}/r,<1. By expanding the
we finally obtain logarithm in Eq.(2.11) for F(w,)<<1 and setting
—  Ag| — Vg
|nyO:(k+P++n_j 194, (3.149 fn—mF(wn), (3.1

whereO, =3y O,/n. denotes the average of the generic the first two equations in Eq¢3.3) take the form

mode observabl®,, in the positive-gain rang®&, . This _ s +
expression yields the fixed-point solution for the carrier den- x,= —kx,+ g, —
sity. Upon neglection of the third term on the right-hand side

X
Y+ faVXexicog Dot ¢ — ]
n

1+e¢

(rhs) of Eq. (3.14 and insertion into Eq(3.12, an explicit 317
expre_ssion for the threshold current can be obtained. The | . ,

termp ., however, still contains the phas¢§, which will . :ﬂ( 9nlNy —k) _ _n\/gsi D +d—d

be discussed in the following. =7 1+ex, 2 Vx, TPt dn= bl
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FIG. 5. lllustration of the fixed-point relatio3.21) for the FIG. 6. The three curvep, (real part of the compound-cavity
phase shift in the Lang-Kobayashi model: the symbéb,) de- loss vs 6, (feedback-induced modal frequency shithat corre-
notes the function on the rhs of E@.21). spond to the Lang-Kobayashi fixed-point conditions in H§sl9

(thin, solid), (3.20 (dotted, and(3.22 (ellipse.
where the prime irx;, and ¢, indicates that these values are
taken at the delayed time— 7. With the addition of the ration decreases accordingly. Furthermore, Egsl9 and
equation for the carrier density, which is unchanged from(3.20 can be combined into the form
Egs. (3.3, these are the Lang-Kobayashi equations, in adi-

mensional form. (20, — anpn)?+p2=1£2, (3.22
At the fixed point,x,=X,, ¢n=p,+ 0,7, and ¢,=6,:
using Eq.(3.10, rewritten as which defines an ellipse in the plan@,(p,). The three
curvesp,, versusd, defined by Eqs(3.19), (3.20, and(3.22
gnln YO_k_ +0(s,) (3.18 are displayed in Fig. 6. Their intersections determine the
1+ex, ~Pn no ' fixed points of the system. For large feedback, the analytical

study is considerably more difficult. The locations of the

the second of Eq¢3.17) becomes fixed points are still found on approximately elliptic curves,
N f for moderate values dR3, but strong deformations appear
0n=7npn— Ensir’[QDHJr 0,7], (3.19  forlargeRs.

The potential number of solutions is very large:nf
modes are comprised within the FBG’s bandwidth, and each
of them exhibitam intersections in Eq3.21), we may expect

pn=—f.cogd, +6,7) (320  aboutm™ different solutions. Therefore, a stability analysis
of this system cannot be easily carried out analytically. Nev-
can be applied. A simple trigonometric operation finally ertheless, results obtained for the single-mode 288,31
yields are still qualitatively valid. In particular, solutions located in
the lower part of the ellipse correspond to modes of the com-

where the small-feedback expansion

fi . pound cavity and are stable for weak feedback; solutions on
On= - 2 1+ apsin @+ O 7+ arctariay) ). (3.21 the upper branch are always unstable. The phase #hifise
of the order of 1/4—1/2 of the mode separatibf (2.3).

Therefore, a complete fixed-point solution for tkemall- For increasing feedback level, several structural changes
feedback rate equations can be found only if each modaloccur, which include Hopf bifurcations of fixed points and
frequencyw, is displaced from its solitary-laser valug, limit cycles, with the creation of tori, torus breakup, inter-
[see Eq.(2.2] by the amountd, that solves Eq(3.2]. It mittency, and crises. Because of the low front-facet reflectiv-
may be noticed that this result is exactsn ity R, in optical communications equipment, chaotic behav-

Multiple solutions exist if the derivative of the rhs of Eq. jor is already achieved fdR;=10"* and the large-feedback
(3.2 is larger than 1 at the inflection points, i.e., if regime can be defined B;,=10"2 (the coupling efficiency
faryl+ an2/2>1. This is illustrated in Fig. 5, fof ,=0.1, 5 being of the order of 0.75-0.84Therefore, in these
a,=2, and7=200 [the labelF(6,) denotes the rhs of Eq. applications, the Lang-Kobayashi model is incorrect even
(3.21)]. The values off,, and 7 are usually larger £ though simulations have been presented in the literature in
>2000): the number of fixed points increases and their sepawhich it was used with parameter values outside of its valid-
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FIG. 7. Numerical attracting torus ati =50 mA, Rj An (nm)

=0.00015,L4,=0.25 m, andAA=1 nm. This attractor coexists
with at least two stable fixed points, with coordinatesxy) close
to (—4.167,1.4782) and (0.842,1.47915) in this projection.

FIG. 8. Numerically computed optical spectru®i\) vs \ (in
nanometens averaged over a delay time for the solution of Fig.
7. The spectrum is in a 10 lggscale, computed using the adimen-
) ) ) sional variablest,, and including the proper transmission factors
ity range. In particular, the phenomenology in the large-through bothR, andRs. All numerical spectra are prepared in this
feedback regime can only be studied with moc8). Afew  ay.

solutions observed in these regions of the parameter space
will be illustrated in the following section. two stable fixed points, the coordinates X§ry) of which are
close to (-4.167,1.4782) and (0.842,1.47915) in this two-
dimensional subspace. Of course, coexistencépossibly
many) more attractors is not excluded. The optical spectrum
System(3.3) has been integrated by using 128 or 256corresponding to the torus of Fig. 7 is shown in Fig. 8: an
laser modes and phases, correcting the sum in the third equaverage over a delay timehas been taken in order to obtain
tion in Egs. (3.3 to account for the amplitudes of the ex- a stable picture which can be compared with the experimen-
cluded side modes. The logarithmag=Inx, of the mode tal ones. The spectra of the two fixed points are similar: the
amplitudes have been integrated, rather thanxhé¢hem-  former has a dip at;=980 nm and the latter has one at the
selves, to achieve a higher accuracy. Because of the wideearby lower-wavelength mode. Tori first appear after the
spread multistability of this system, we illustrate a few solitary laser’s fixed point has undergone two Hopf bifurca-
samples of its typical behavior, rather than scanning a portions (first, to a limit cycle and, then, to a torugpon gradual
tion of parameter space in a systematic manner. In the folincrease of the external reflectivifg;. The extremely low
lowing, we present four main types of solutions or transi-value ofR; shows how “compressed” the bifurcation region
tions: a quasiperiodic attractor, a transient from a narrows with respect to the domain in which commercial devices
band to a multimode optical spectrum, coexisting strangeperate.
attractors, and the alternation between well-locked and partly A chaotic transition with a broadening of the optical spec-
locked spectra. While the first is shown only for illustration trum is illustrated in Figs. 9—11 which all refer to the follow-
purposes, the other three situations are typical of these syfirg parameter values:=120 mA, R3=0.015, Lg=1 m,
tems and relevant for the applications. and AN=2 nm. A transient orbit, corresponding to about
At very low feedback, fixed points are the most commong00 roundtrips in the external cavity, eventually evolves into
solution. Their bifurcations, however, are quite abrupt anche globally stable strange attractor in Fig. 10. The respective
hard to follow. Therefore, limit cycles and tori are seldom optical spectra, also averaged over a timeare qualitatively
observed. In Fig. 7, an attracting torus is shown in a two-ifferent(single-mode vs multimode: see Fig.)1Notice the
dimensional projection of phase space: the horizontal axismoothness of the multimode spectrum, in spite of the ir-
corresponds to the logarithm of the 980 nm mode amplitudeegular shape of the attractor in Fig. 10, with its bursts into
Xo, and the vertical one to the normalized carrier dengity both low-amplitudex, and high carrier density regions. At
The relevant parameters values arfe=50 mA, R; nearby parameter values, stable single- or two-mode solu-
=0.00015,Ley=0.25 m, andAN=1 nm. The two main tions are found, which correspond to fixed points in phase
frequencies correspond to the relaxation oscillations and tepace, although they are difficult to locate because of the
the round trip in the external cavity: their ratio483.636. It  smallness of their basins of attraction. Noise can destabilize
should be pointed out that this solution coexists with at leasthem and cause the alternation between narrow and multi-

IV. MAIN TRAJECTORIES AND TRANSITION TYPES
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—2 0 2 In Zo 4 FIG. 11. Numerical optical spectra corresponding to the orbits

of Figs. 9 (simple line and 10(line and circles the former is

FIG. 9. Metastable chaotic orbit, computedlat120 mA, R, narrow (single modg while the latter is multimodal.

=0.015, L¢y=1 m, andAX=2 nm. After a long transienthun-
dreds of delay times), it evolved into the stable strange attractor

A amplitude fluctuations, and is observed in single-mode mod-
shown in Fig. 10.

els as well: after the onset of chaos, the derivatvalso

) fluctuates chaotically and displaces the emission frequency
mode spectra. Usually, two-mode solutions are more stablgsee Eq(2.2)], so that a line broadening appears in the op-
than single-mode ones. It must be stressed that this transiza) spectrum.

tion, often dubbed “single-mode to multimode switching,”  The coexistence of strange attractors, a phenomenon
occurs within a chaotic regime and is a different phenomypich is not observed in the low-feedbailang-Kobayashi

enon from the so-called coherence collafs®17)) whichis  approximation, is documented in Figs. 12—14. The parameter

also related to a broadening of the spectrum. The latter, ijgjyes are =150 mA, Lo,=1 m, Rs=0.1, and A\

fact, is just the first appearance of chaos upon change of a7 nm. The larger attractor is of the Shilnikov ty[22]: a
bifurcation parameter, often accompanied by low-frequencyiyed point, close td3.3, 1.265 in this two-dimensional pro-

jection, has a two-dimensional stable manifold with

1.7 . , . , . I complex-conjugate eigenvalues and a one-dimensional un-
3 b L L L AL
Y : : 14 - T
] 1.35 -
15 .
I | 1.3
1.4 i ] 1.25
1.3 I . ! \ B 1 V . 1 | 1.2 -
-2 0 2 In z, 4 N T N

-5 0 In z, 5
FIG. 10. Stable strange attractor observed at the same parameter
values used in the computations of the orbit in Fig. 9. Notice the FIG. 12. Stable, Shilnikov-type strange attractor, computed at
rare amplitude drops and the bursts in the carrier density. =150 mA,R3=0.1, L¢,=1 m, andAN=2 nm.
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FIG. 15. Numerical optical spectra of generatiofsimple solid
line and line with circlesand of generation-I{triangles lasers, all
computed under the same conditions=60 mA, R;=0.015, Loy
=1 m, andAX=1.2 nm). The first two alternate irregularly in

real eigenvalue. The smaller attractor has a similar temporaime, with the device being mostly in the well-locked condition
evolution, with a twisted shape, but the Shilnikov structure is(circles.

less clearly unfolded. In spite of their qualitatively different

aspect, the two solutions correspond to nearly identical optidition in this laser setup. In Fig. 15, three optical spectra are

cal spectra. Since the coexistencdissibly severalattrac-

shown. They have all been computed for 60 mA, R;

tors, either all chaotic or not, is widespread in this system, it=0.015, L.,,=1 m, andAA=1.2 nm, but using lasers of
appears that the mere recording of optical spectra in the labgfifferent generations. The solid curve without symbols ex-
ratory can hardly help classify the dynamical behavior in ahibits a partly locked spectrum of a generation-I laser which

precise way.

later evolves into an unlocked spectrum, in which emission

Finally, we briefly illustrate the transition between occurs around the gain maximufautside of the figure, on
frequency-locked and either unlocked or partly locked con+the leff), and then returns to a well-locked situation, which is

S(r,) (dB)

|
[AN)
o

978

980
A, (nm)

982

marked with circles. These states alternate irregularly in
time, whereby the fully locked behavior is widely predomi-
nant. The third graph, marked with triangles, shows a per-
fectly locked state for a generation-1l device which exhibits
stable behavior in this parameter region. The different laser
cavity length reflects in the different mode spaciag33%
difference, which is clearly visible in the figure. This kind of
instability is characterized by ample oscillations in the car-
rier densityy (wider than those observed in Fig.)12vhile
possible intermissions of the phase-space trajectories into the
low-amplitude regions are uninfluential. The attractors of the
generation-1l lasers for this parameter choice are smaller and
more concentrated than those of generation-l devices, and
are shifted towards lower carrier density. All these attractors
are qualitatively similar to the one displayed in Fig. 10.

V. COMPARISON WITH THE EXPERIMENT

In this final section, we present experimental optical spec-
tra and the corresponding time series in Figs. 16—21. The
parameters values again correspond to typical frequency-

FIG. 14. Numerical optical spectra corresponding to the orbitsStabilized pump lasers. The first two examples refer to a

of Figs. 12(simple line and 13(line and circles The graphs al-
most coincide.

generation-| laser and the last four to a generation-Il laser:
the main differences between these devices are in the front-
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FIG. 16. Experimental optical spectra of generation-I lasers re- FIG. 18. Same as in Fig. 16, for a generation-ll laser, recorded
corded atl =60.4 mA, R;=0.015,L,=1 m, AA=4 nm, andT at1=60.3 mA, R;=0.03,L=2 m, AN=1 nm, andT=25°C.
=18.2°C.

to as “low-frequency fluctuations.” The strange attractor,
facet reflectivity and in the cavity length, as mentionedwhich can be reconstructed via embedding, has a shape of
above. Figure 16 clearly shows the main peak due to théhe kind shown in Fig. 10. The limited time resolution of the
reflection from the FBG and a side peak centered around theeasurement& ng only allows to view the overall shape
gain curve of the device. Notwithstanding the different pa-and apparent density of the attractors, but no clear details of
rameter settings, this spectrum is comparable with the onthe orbits. For this reason, no experimental attractors are
displayed in Fig. 8. The dynamics, however, is clearly differ-shown.
ent. While Fig. 8 corresponds to a torgBig. 7), in the A different kind of amplitude drop is seen in the next
present example the motion is chaotic, as appears from thexample, Figs. 18 and 19, which demonstrates how a per-
time series displayed in Fig. 17. Relatively frequent ampli-fectly stable and locked optical spectrum can hide interesting
tude drops are visible: this is the phenomenon often referredynamical behavior. The FBG central frequency is here

Ngragg= 973.5 nm.

O ol

0.95 .

0.8 .

t (us) 0 2 4
. . . . . _ t (us)
FIG. 17. Time-series of the total intensityt), normalized to its

average(x), vs timet, corresponding to the spectrum in Fig. 16: FIG. 19. Time series corresponding to the spectrum in Fig. 18,
time is in units of 1us. in analogy with Fig. 17.
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enology than single-mode ones. Narrgmossibly single-

Finally, a typical high-power optical spectrum is shown in mode optical spectra have been shown to appear when the

Fig. 20. The corresponding time series is completely differtrajectories visit certain regions of phase space, depending on

ent from the previous ones: no low-frequency fluctuationghe parameters of the system. The switching between multi-

occur, and the sequence has a “random” aspect. The attractonode and narrow optical spectra, documented in Figs. 9-11,

is apparently high dimensional. All of these features are welhas been shown to correspond to transitions between chaotic

reproduced by mode&B.3). and periodic attractordeither stable or destabilized by
noise.
VI. CONCLUSIONS This is inherently different from the broadening of spec-

tral lines associated with the low-frequency fluctuations that

We have studied the multimode dynamics of 980 nmare commonly reported, primarily in single-mode systems, in
pump lasers coupled with high-reflectivity, frequency-connection with the term coherence collapse. The present
selective fiber-Bragg gratings, both numerically and experistudy also casts light on this, often nebulously defined, con-
mentally. An improved set of rate equations, which allowscept. Indeed, broadening of the optical spectral lines is
one to treat high feedback levels, such as those usually encaused by the chaotic fluctuations of the phases which ac-
ployed in optical communication systems, has been preeordingly affect the values of the emission frequencies.
sented. This type of frequency selecti@tabilizatior) drives  Therefore, this phenomenon is just a manifestation of the
the system deeply in a chaotic regime. Within it, we havechaotic nature of the system’s trajectories.
singled out a few particularly relevant solutions and the tran- Finally, the beneficial effect of chaos on multimode op-
sitions that take place among them. eration is reinforced in the sense that narrow-band spectra

We pointed out that some of the latter and the alternatiorappear to correspond to small regions of phase-space which
of frequency-locked and unlocked states do not have a counend to shrink for generation-Il lasers, since these achieve
terpart in weak-feedback models, such as Lang-Kobayashi'igher output power and, in turn, higher levels of chaos, with
Moreover, the multimode system exhibits a richer phenomimore compact attractors.

[1] F. Favre, D. LeGuen, and J.C. Simon, IEEE J. Quantum Elec-[6] R.W. Tkach and A.R. Chraplyvy, J. Lightwave Technidl-4,

tron. QE-18, 1712(1982. 1655(1986.
[2] K. Kikuchi and T. Okoshi, Electron. Letil8, 10 (1982. [7] The result is a “delayed dynamical system,” a kind of model
[3] J.0. Binder and G.D. Cormack, IEEE J. Quantum Electan. which is the subject of active theoretical and experimental in-
2255(1989. vestigationd8-13].
[4] R. Lang and K. Kobayashi, IEEE J. Quantum ElectrQt- [8] M.C. Mackey and L. Glass, Sciend®7, 287 (1977).
16, 347(1980. [9] J.D. Farmer, Physica B, 366 (1982.
[5] C.H. Henry and R.F. Kazarinov, IEEE J. Quantum Electron.[10] J. Mork, B. Tromborg, and J. Mark, IEEE J. Quantum Elec-
QE-22, 294(1986. tron. 28, 93 (1992.

036605-11



BADII et al. PHYSICAL REVIEW E 68, 036605 (2003

[11] J. Simonet, E. Brun, and R. Badii, Phys. Rev.5E 2294  [21] R. KashyapFiber Bragg Gratings(Academic Press, San Di-

(1995. ego, 1999,
[12] J. Mallet-Paret, J. Diff. Eqnsl25, 385 (1996. [22] H. Rong-Qing and T. Shang-Ping, IEEE J. Quantum Electron.
[13] G. Giacomelli and A. Politi, Physica D17, 26 (1998. 25, 1580(1989. o _
[14] M. Fujiwara, K. Kubuta, and R. Lang, Appl. Phys. Le88, [23] L. A. Coldrer_1 an_d S. W. Corzindiode Lasers and Photonic
217 (1981). Integrated Circuits(Wiley, New York, 1983.

[24] C.H. Henry, IEEE J. Quantum ElectroQE-18, 359(1982.
[25] The more general fornEe,mPn has also been used, with
various choices of the matrix,, such ase,,=e/(1+]|n

[15] R. Ries and F. Sporleder, Proceedings of the Eighth ECOC
Cannes, France, 1982, p. 285.

[16] D. Lenstra, B.H. Verbeek, and A.J. Denoef, IEEE J. Quantum  _ |y |n the following, however, we only consider the diag-
Electron.QE-21, 674 (1985. onal form e,,= €8,m, Which leads to expressidi2.14).

[17] K. Petermannlaser Diode Modulation and Noise&Kluwer,  [26] B. Schmidt, S. Mohrdiek, C. Harder, Dptical Fiber Telecom-
Dordrecht, 1991 munications IV-A edited by I. P. Kaminov and T. L{Aca-

[18] M. Achtenhagen, S. Mohrdiek, T. Pkia, N. Matuschek, C.S. demic Press, San Diego, 200p. 563; B. Schmidt, S. Pawlik,
Harder, and A. Hardy, IEEE Photonics Technol. L&8, 415 B. Mayer, S. Mohrdiek, I. Jung, B. Sverdlov, N. Lichtenstein,
(2001). N. Matuschek, and C. Harder, in Proceedings of the Optical

[19] G. Vaschenko, M. Giudici, J.J. Rocca, C.S. Menoni, J.R. Fiber Communication Conference, Anaheim, CA, 2002, p.

. 702.
Tredicce, and S. Balle, Phys. Rev. Le#tl, 5536 (1998 I.
Wallace, D. Yu, R.G. Harrison, and A. Gavrielides, J. Opt. B: [27]B. Zhao, T.R. Chen, S. Wu, Y.H. Zhuang, Y. Yamada, and A.

! . ] i Yariv, Appl. Phys. Lett.62, 1591(1993.
Quantum Semiclassical O, 447 (2000; E.A. Viktorov and [28] D.T. Cassidy, J. Appl. Phy&6, 3096 (1984.

P. Mandel, Phys. Rev. LetB5, 3157 (2000; T.W. Carr, D.  [29] B.W. Hakki and T.L. Paoli, J. Appl. Phyg6, 1299(1975.

Pieroux, and P. Mandel, Phys. Rev68, 033817(2002). [30] B. Tromborg, J.H. Osmundsen, and H. Olesen, IEEE J. Quan-
[20] In order to simplify the notation, the same symis), is used tum Electron.QE-20, 1023(1984.

for both the reflector and its reflectivity, as long as no misun-[31] T. Sano, Phys. Rev. A0, 2719(1994.

derstanding arises. TheRg;=max]r° denotes the peak re- [32] L.P. Shilnikov, Sov. Math. Dokl6, 163 (1969; Math. USSR

flectivity of the FBG. Sh.10, 91 (1970.

036605-12



